Главная Новости

Снимок зубов ортопантомограмма в

Опубликовано: 21.04.2020

Известны несколько тысяч алгоритмов, применяемых для задач вычислительной (реконструктивной) томографии. Их можно объединить в несколько больших основных групп.

снимок зубов ортопантомограмма в

Со времён Абеля, Радона, Вайнштейна применялись алгоритмы аналитического обратного преобразования. Математической особенностью этих задач является то, что они принадлежат классу некорректно по Адамару поставленных задач, как правило, родственных интегральным уравнениям Фредгольма, подробнее тут снимок зубов ортопантомограмма в спб. Эффективным средством их решения при конечном числе проекций является метод регуляризации академика А.   Н.   Тихонова, развитый впоследствии Филлипсом, Арсениным, Ягломом, Тананой и многими др.

Для осесимметричных систем применяют непосредственно обратное преобразование Абеля. Его дискретная версия впервые была применена Ван-Циттертом для задачи разрешения сверх предела Рэлея.

Для 2-мерных систем, описываемых двумя разделяющимися переменными, применяют элементарное преобразование Агравала и Содха. Для систем с известной группой симметрии теорема Вайнштейна указывает наименьшее число проекций, достаточных для точной реконструкции системы.

Для их решения применяют 3 иных класса алгоритмов.

Класс 2. Безытерационное обратное преобразование разложения проекций по ортогональным функциям (Фурье, Чебышёва, Котельникова, Хартли, Уолша, Радемахера и др. ).

rss